题目内容

【题目】如图所示,∠1=65°,则∠A+∠B+∠C+D+∠E+∠F的度数为___________.

【答案】230°

【解析】

依据三角形内角和定理,即可得到∠B+∠C115°,∠MGH+∠MHG115°,再根据三角形外角性质,即可得出∠A+∠B+∠C+∠D+∠E+∠F的度数.

如图所示,

∵∠1=∠BMC65°

∴∠B+∠C180°65°115°,∠MGH+∠MHG115°

又∵∠MGHDFG的外角,∠MHGAEH的外角,

∴∠MGH=∠F+∠D,∠MHG=∠A+∠E

∴∠F+∠D+∠A+∠E=∠MGH+∠MHG115°

∴∠A+∠B+∠C+∠D+∠E+∠F115°115°230°

故答案为:230°

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网