题目内容

阅读材料:
在直角坐标系中,已知平面内A(x1,y2)、B(x1,y2)两点坐标,则A、B两点之间的距离等于
(x2-x2)2(y2-y1)2

例:说明代数式
x2+1
+
(x-3)2+4
的几何意义,并求它的最小值.
解:
x2+1
+
(x-3)2+4
=
(x-0)2+(0-1)2
+
(x-3)2+(0-2)2
,如图,建立平面直角坐标系,点P(x,0)是x轴上一点,则
(x-0)2+(0-1)2
可以看成点P与点A(0,1)的距离,
(x-3)2+(0-2)2
可以看成点P与点B(3,2)的距离,所以原代数式的值可以看成线段PA与PB长度之和,它的最小值就是PA+PB的最小值.
设点A关于x轴的对称点为A′,则PA=PA′,因此,求PA+PB的最小值,只需求PA′+PB的最小值,而点A′、B间的直线段距离最短,所以PA′+PB的最小值为线段A′B的长度.为此,构造直角三角形A′CB,因为A′C=
3
3
,CB=
3
3
,所以A′B=
3
2
3
2
,即原式的最小值为
3
2
3
2

根据以上阅读材料,解答下列问题:
(1)完成上述填空.
(2)代数式
(x-i)2+1
+
(x-2)2+9
的值可以看成平面直角坐标系中点P(x,0)与点A(1,1)、点B
(2,3)
(2,3)
的距离之和.(填写点B的坐标)
(3)求代数式
x2+49
+
x2-12x+37
的最小值.(画图计算)
分析:(1)根据B、A′的坐标求出A′C=3,BC=3,由勾股定理求出A′B即可.
(2)
(x-i)2+1
+
(x-2)2+9
=
(x-1)2+(0-1)2
+
(x-2)2+(0-3)2
,即可得出答案.
(3)求出
x2+49
+
x2-12x+37
=
(x-0)2+(0-7)2
+
(x-6)2+(0-1)2
,得出所求代数式的值可以看成平面直角坐标系中点P(x,0)与点A(0,7)、点B(6,1)的距离之和,作A关于x轴的对称点为A′,求出A′B即可.
解答:解:(1)∵B(3,2),A′(0,-1),
∴A′C=3,BC=2-(-1)=3,
由勾股定理得:A′B=
32+32
=3
2

即原式的最小值是3
2

故答案为:3,3,3
2
,3
2


(2)∵
(x-i)2+1
+
(x-2)2+9
=
(x-1)2+(0-1)2
+
(x-2)2+(0-3)2

∴代数式
(x-i)2+1
+
(x-2)2+9
的值可以看成平面直角坐标系中点P(x,0)与点A(1,1)、点B(2,3)的距离之和,
故答案为:(2,3).

(3)
x2+49
+
x2-12x+37
=
x2+72
+
(x-6)2+12
=
(x-0)2+(0-7)2
+
(x-6)2+(0-1)2

即所求代数式的值可以看成平面直角坐标系中点P(x,0)与点A(0,7)、点B(6,1)的距离之和,
如图所示,
∵设A关于x轴的对称点为A′,则PA=PA′,
∴PA+PB的最小值,只需求PA′+PB的最小值,而点A′、B间的距离最短,
∴PA′+PB的最小值为线段A′B的长度,
∵A(0,7),B(6,1),
∴A′,-7),
∴A′C=6,BC=8,
由勾股定理得:A′B=
62+82
=10,
即代数式
x2+49
+
x2-12x+37
的最小值是10.
点评:本题考查了勾股定理,轴对称-最短路线问题的应用,主要考查学生的阅读理解能力和计算能力..
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网