题目内容
阅读材料:在直角三角形中,30°所对的直角边是斜边的一半.如图,把含有30°角的三角板ABO置入平面直角坐标系中,A,B两点坐标分别为
(3,0)和(0,).动点P从A点开始沿折线AO-OB-BA运动,点P在AO,OB,BA上运动,速度分别为1,,2(单位长度/秒).一直尺的上边缘l从x轴的位置开始以(单位长度/秒)的速度向上平行移动(即移动过程中保持l∥x轴),且分别与OB,AB交于E,F两点﹒设动点P与动直线l同时出发,运动时间为t秒,当点P沿折线AO-OB-BA运动一周时,直线l和动点P同时停止运动.
请解答下列问题:
(1)过A,B两点的直线解析式是______
【答案】分析:(1)考查了待定系数法求一次函数;
(2)此题要掌握点P的运动路线,要掌握点P在不同阶段的运动速度,即可求得;
(3)此题需要分三种情况分析:点P在线段OA上,在线段OB上,在线段AB上;根据菱形的判定可知:在线段EF的垂直平分线上与x轴的交点,可求的一个;当点P在线段OB上时,形成的是三角形,不存在菱形;当点P在线段BA上时,根据对角线互相平分且互相垂直的四边形是菱形求得.
解答:解:(1)设直线AB的解析式是y=ax+b(a≠0).则
,
解得,,
故直线AB的解析式为:y=-x+3;(4分)
(2)∵A,B两点坐标分别为(3,0)和(0,),
∴AO=3,OB=3,
∴tAO=3÷1=3(秒),tOB=4-3=1(秒),
∴P(0,);
根据题意知,点P与点E在OB上重合,则
=+,即=3+,
解得,OE=,
∴t=÷=,即t=;(4分)(各2分)
(3)①当点P在线段AO上时,过F作FG⊥x轴,G为垂足(如图1)
∵OE=FG,EP=FP,∠EOP=∠FGP=90°,
∴△EOP≌△FGP(SAS),∴OP=PG,
又∵OE=FG=t,∠A=60°,∴AG=FGtan60°=t;
而AP=t,
∴OP=3-t,PG=AP-AG=t,
由3-t=t,得
t=;(1分)
当点P在线段OB上时,形成的是三角形,不存在菱形;
当点P在线段BA上时,
过P作PH⊥EF,PM⊥OB,H、M分别为垂足(如图2),则四边形PMEH是矩形,
∴PM=EH.
∵四边形PEP'F是菱形,
∴EH=FH.
∵OE=t,∴BE=3-t,∴EF=BEtan60°=3-
∴MP=EH=EF=,又∵BP=2(t-6)
在Rt△BMP中,BP•cos60°=MP
即2(t-6)•=,解得t=.(1分)
点评:此题考查了待定系数法求一次函数的解析式,还考查了菱形的性质与判定以及相似三角形的判定与性质,解题的关键要注意数形结合思想的应用,还要注意答案的不唯一性.
(2)此题要掌握点P的运动路线,要掌握点P在不同阶段的运动速度,即可求得;
(3)此题需要分三种情况分析:点P在线段OA上,在线段OB上,在线段AB上;根据菱形的判定可知:在线段EF的垂直平分线上与x轴的交点,可求的一个;当点P在线段OB上时,形成的是三角形,不存在菱形;当点P在线段BA上时,根据对角线互相平分且互相垂直的四边形是菱形求得.
解答:解:(1)设直线AB的解析式是y=ax+b(a≠0).则
,
解得,,
故直线AB的解析式为:y=-x+3;(4分)
(2)∵A,B两点坐标分别为(3,0)和(0,),
∴AO=3,OB=3,
∴tAO=3÷1=3(秒),tOB=4-3=1(秒),
∴P(0,);
根据题意知,点P与点E在OB上重合,则
=+,即=3+,
解得,OE=,
∴t=÷=,即t=;(4分)(各2分)
(3)①当点P在线段AO上时,过F作FG⊥x轴,G为垂足(如图1)
∵OE=FG,EP=FP,∠EOP=∠FGP=90°,
∴△EOP≌△FGP(SAS),∴OP=PG,
又∵OE=FG=t,∠A=60°,∴AG=FGtan60°=t;
而AP=t,
∴OP=3-t,PG=AP-AG=t,
由3-t=t,得
t=;(1分)
当点P在线段OB上时,形成的是三角形,不存在菱形;
当点P在线段BA上时,
过P作PH⊥EF,PM⊥OB,H、M分别为垂足(如图2),则四边形PMEH是矩形,
∴PM=EH.
∵四边形PEP'F是菱形,
∴EH=FH.
∵OE=t,∴BE=3-t,∴EF=BEtan60°=3-
∴MP=EH=EF=,又∵BP=2(t-6)
在Rt△BMP中,BP•cos60°=MP
即2(t-6)•=,解得t=.(1分)
点评:此题考查了待定系数法求一次函数的解析式,还考查了菱形的性质与判定以及相似三角形的判定与性质,解题的关键要注意数形结合思想的应用,还要注意答案的不唯一性.
练习册系列答案
相关题目