题目内容
如图,四边形
,
,
都是正方形,边长分别为
;
五点在同一直线上,则
(用含有
的代数式表示).![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230210280392827.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021027961526.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021027976552.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021027976631.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021027992449.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021028007702.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021028023268.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021028039396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230210280392827.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021028054544.png)
解:由三个正方形如图的摆放,因为四边形ABCD、EFGH、NHMC都是正方形,所以∠CNB+∠ENH=90°,
又因为∠CNB+∠NCB=90°,∠ENH+∠EHN=90°,所以∠CNB=∠EHN,∠NCB=∠ENH
又因为CN=NH,∴△CBN≌△NEH,
所以HE=BN,故在Rt△CBN中,BC2+BN2=CN2,
又已知三个正方形的边长分别为a,b,c,则有a2+b2=c2,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021028023268.png)
.
又因为∠CNB+∠NCB=90°,∠ENH+∠EHN=90°,所以∠CNB=∠EHN,∠NCB=∠ENH
又因为CN=NH,∴△CBN≌△NEH,
所以HE=BN,故在Rt△CBN中,BC2+BN2=CN2,
又已知三个正方形的边长分别为a,b,c,则有a2+b2=c2,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021028023268.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823021028054544.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目