题目内容
【题目】如图,直线l上有一点P1(2,1),将点P1先向右平移1个单位,再向上平移2个单位得到像点P2,点P2恰好在直线l上.
(1)写出点P2的坐标;
(2)求直线l所表示的一次函数的表达式;
(3)若将点P2先向右平移3个单位,再向上平移6个单位得到像点P3.请判断点P3是否在直线l上,并说明理由.
【答案】P2(3,3);y=2x﹣3;在.
【解析】
试题分析:本题考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征以及一次函数图象的几何变换.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.(1)根据“左加右减、上加下减”的规律来求点P2的坐标;
(2)设直线l所表示的一次函数的表达式为y=kx+b(k≠0),把点P1(2,1),P2(3,3)代入直线方程,利用方程组来求系数的值;(3)把点(6,9)代入(2)中的函数解析式进行验证即可.
试题解析:(1)P2(3,3).
(2)设直线l所表示的一次函数的表达式为y=kx+b(k≠0),
∵点P1(2,1),P2(3,3)在直线l上, ∴, 解得.
∴直线l所表示的一次函数的表达式为y=2x﹣3.
(3)点P3在直线l上.由题意知点P3的坐标为(6,9), ∵2×6﹣3=9,
∴点P3在直线l上.
练习册系列答案
相关题目