题目内容

已知x1,x2是一元二次方程(a-6)x2+2ax+a=0的两个实数根,是否存在实数a,使-x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请你说明理由.
分析:由x1,x2是一元二次方程(a-6)x2+2ax+a=0的两个实数根,可得x1+x2=-
2a
a-6
,x1•x2=
a
a-6
,△=(2a)2-4a(a-6)=24a>0,又由-x1+x1x2=4+x2,即可求得a的值.
解答:解:存在.
∵x1,x2是一元二次方程(a-6)x2+2ax+a=0的两个实数根,
∴x1+x2=-
2a
a-6
,x1•x2=
a
a-6
,△=(2a)2-4a(a-6)=24a>0,
∴a>0,
∵-x1+x1x2=4+x2
∴x1x2=4+x2+x1
a
a-6
=4-
2a
a-6

解得:a=24.
点评:此题考查了根与系数的关系以及根的判别式.此题难度适中,注意掌握若二次项系数不为1,x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-
b
a
,x1x2=
c
a
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网