题目内容
【题目】已知在△ABC中,∠ABC=90°,以AB上的一点O为圆心,以OA为半径的圆交AC于点D,交AB于点E.
(1)求证: ;
(2)如果BD是⊙O的切线,D是切点,E是OB的中点,当BC=2时,求AC的长.
【答案】(1)证明见解析;(2)4.
【解析】试题分析:(1)本题利用两角法判定三角形相似,利用相似三角形的性质得出比例式即可;(2)利用切线的性质和特殊角的三角函数值判断出∠OBD=30°,进而得出∠BAC=30°,利用30°所对的直角边是斜边的一半即可得出.
试题解析:
(1)证明:连接DE,
∵AE是直径,∴∠ADE=90°.
∴∠ADE=∠ABC.
又∠A=∠A,∴△ADE∽△ABC. (3分)
∴. (4分)
(2)解:连接OD,
∵BD是⊙O的切线,
∴OD⊥BD
∴∠ODB=90°. (5分)
∵在Rt△OBD中,E是OB的中点,
∴DE= =BE=OE=OD, (6分)
∴sin∠OBD= .
∴∠OBD=30° (7分)
同理∠BAC=30°. (8分)
在Rt△ABC中,AC=2BC=2×2=4.(9分)
练习册系列答案
相关题目
【题目】某下岗职工购进一批货物,到集贸市场零售,已知卖出去的货物数量x与售价y的关系如下表:
数量x(千克) | 1 | 2 | 3 | 4 | 5 |
售价y(元) | 3+0.1 | 6+0.2 | 9+0.3 | 12+0.4 | 15+0.5 |
写出用x表示y的公式是 .