题目内容
【题目】已知抛物线y=ax2+bx+c经过点A(0,3)、B(4,3)、C(1,0)、
(1)填空:抛物线的对称轴为直线x= , 抛物线与x轴的另一个交点D的坐标为;
(2)求该抛物线的解析式.
【答案】
(1)2;(3,0)
(2)解:∵拋物线经过点C(1,0)、D(3,0),
∴设拋物线的解析式为y=a(x﹣1)(x﹣3)
由拋物线经过点A(0,3),得a=1
∴拋物线的解析式为y=x2﹣4x+3
【解析】解:(1)拋物线的对称轴为直线x=2;
拋物线与x轴的另一个交点D的坐标为(3,0);
【考点精析】通过灵活运用二次函数的性质,掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小即可以解答此题.
练习册系列答案
相关题目
【题目】纸箱厂用如图1所示的长方形和正方形纸板,做成如图2所示的竖式与横式两种长方体形状的有底无盖纸盒.
(1)现有正方形纸板172张,长方形纸板330张.若要做两种纸盒共l00个,设做竖式纸盒x个.
①根据题意,完成以下表格:
纸盒 | 竖式纸盒(个) | 横式纸盒(个) |
x | ||
正方形纸板(张) | 2(100-x) | |
长方形纸板(张) | 4x |
②按两种纸盒的数量分,有哪几种生产方案?
(2)若有正方形纸板112张,长方形纸板张,做成上述两种纸盒,纸板恰好用完.已知100<<110,则的值是 .