题目内容
【题目】填空,将理由补充完整.
如图,于,于,,求证:.
证明:∵,(已知)
∴(垂直的定义)
∴(________________________)
∴(________________________)
∵(已知)
又∵(________________________)
∴(________________________)
∴(________________________)
∴(________________________)
【答案】同位角相等,两直线平行;两直线平行,同位角相等;平角的定义;等量代换;等量代换;内错角相等,两直线平行
【解析】
由垂直的定义得出∠BED=∠BFC=90°;由同位角相等得出ED∥FC;由两直线平行,同位角相等,得出∠2=∠3;由∠1+∠EDC=180°,∠2+∠EDC=180°,等量代换得出∠1=∠2,等量代换得出∠1=∠3;由内错角相等,两直线平行即可得出结论.
证明:∵CF⊥AB,DE⊥AB(已知),
∴∠BED=∠BFC=90°(垂直的定义),
∴ED∥FC (同位角相等,两直线平行),
∴∠2=∠3 (两直线平行,同位角相等),
∵∠1+∠EDC=180°(已知),
又∵∠2+∠EDC=180°(平角的定义),
∴∠1=∠2 (等量代换),
∴∠1=∠3(等量代换),
∴FG∥BC (内错角相等,两直线平行).
故答案为:同位角相等,两直线平行;两直线平行,同位角相等;平角的定义;等量代换;等量代换;内错角相等,两直线平行.
【题目】某校八年级学生开展跳绳比赛活动,每班派5名学生参加,按团体总分多少排列名次,统计发现成绩最好的甲班和乙班总分相等,下表是甲班和乙班学生的比赛数据单位:个
选手 | 1号 | 2号 | 3号 | 4号 | 5号 | 总计 |
甲班 | 100 | 98 | 105 | 94 | 103 | 500 |
乙班 | 99 | 100 | 95 | 109 | 97 | 500 |
此时有学生建议,可以通过考察数据中的其他信息作为参考,请解答下列问题:
求两班比赛数据中的中位数,以及方差;
请根据以上数据,说明应该定哪一个班为冠军?为什么?