题目内容

【题目】如图所示,在Rt△ABC与Rt△OCD中,∠ACB=∠DCO=90°,O为AB的中点.

(1)求证:∠B=∠ACD.
(2)已知点E在AB上,且BC2=ABBE.
(i)若tan∠ACD= ,BC=10,求CE的长;
(ii)试判定CD与以A为圆心、AE为半径的⊙A的位置关系,并请说明理由.

【答案】
(1)

证明:∵∠ACB=∠DCO=90°,

∴∠ACB﹣∠ACO=∠DCO﹣∠ACO,

即∠ACD=∠OCB,

又∵点O是AB的中点,

∴OC=OB,

∴∠OCB=∠B,

∴∠ACD=∠B


(2)

解:(i)∵BC2=ABBE,

∵∠B=∠B,

∴△ABC∽△CBE,

∴∠ACB=∠CEB=90°,

∵∠ACD=∠B,

∴tan∠ACD=tan∠B=

设BE=4x,CE=3x,

由勾股定理可知:BE2+CE2=BC2

∴(4x)2+(3x)2=100,

∴解得x=2

∴CE=6

(ii)过点A作AF⊥CD于点F,

∵∠CEB=90°,

∴∠B+∠ECB=90°,

∵∠ACE+∠ECB=90°,

∴∠B=∠ACE,

∵∠ACD=∠B,

∴∠ACD=∠ACE,

∴CA平分∠DCE,

∵AF⊥CE,AE⊥CE,

∴AF=AE,

∴直线CD与⊙A相切


【解析】(1)因为∠ACB=∠DCO=90°,所以∠ACD=∠OCB,又因为点O是Rt△ACB中斜边AB的中点,所以OC=OB,所以∠OCB=∠B,利用等量代换可知∠ACD=∠B;(2)(i)因为BC2=ABBE,所以△ABC∽△CBE,所以∠ACB=∠CEB=90°,因为tan∠ACD=tan∠B,利用勾股定理即可求出CE的值;
(ii)过点A作AF⊥CD于点F,易证∠DCA=∠ACE,所以CA是∠DCE的平分线,所以AF=AE,所以直线CD与⊙A相切.本题考查圆的综合问题,涉及等量代换,勾股定理,相似三角形的判定与性质,锐角三角函数等知识,知识点较综合,需要学生灵活运用所学知识解决问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网