题目内容
【题目】P为等边△ABC内的一点,PA=10,PB=6,PC=8,将△ABP绕点B顺时针旋转60°到△CBP′位置.
(1)判断△BPP′的形状,并说明理由;
(2)求∠BPC的度数.
【答案】(1) △BPP′是等边三角形,理由详见解析;(2)150°.
【解析】
试题分析:(1)根据旋转的性质得BP=BP′,∠PBP’=60°,AP=CP′=10,则利用等边三角形的判定方法可判断△BPP′是等边三角形;
(2)利用△BPP′是等边三角形得到∠BPP′=60°,PP′=PB=6,然后利用勾股定理的逆定理可证明△PCP′是直角三角形,∠P′PC=90°,再计算∠BPP′+∠P′PC即可.
试题解析:(1)△BPP′是等边三角形;理由如下:
∵△ABP绕点B顺时针旋转60°到△CBP′位置,
∴BP=BP′,∠PBP′=60°,AP=CP′=10,
∴△BPP′是等边三角形;
(2)∵△BPP′是等边三角形,
∴∠BPP′=60°,PP′=PB=6,
∵,
∴,
∴△PCP′是直角三角形,∠P′PC=90°,
∴∠BPC=∠BPP′+∠P′PC=60°+90°=150°.
练习册系列答案
相关题目