题目内容
【题目】抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则下列结论:①4ac﹣b2<0;②2a﹣b=0;③a+b+c<0;④点M(x1,y1)、N(x2,y2)在抛物线上,若x1<x2,则y1≤y2,其中正确结论的个数是( )
A. 1个B. 2个C. 3个D. 4个
【答案】C
【解析】
根据函数与x中轴的交点的个数,以及对称轴的解析式,函数值的符号的确定即可作出判断.
函数与x轴有两个交点,则b2﹣4ac>0,即4ac﹣b2<0,故①正确;
函数的对称轴是x=﹣1,即﹣=﹣1,则b=2a,2a﹣b=0,故②正确;
当x=1时,函数对应的点在x轴下方,则a+b+c<0,则③正确;
则y1和y2的大小无法判断,则④错误.
故选:C.
练习册系列答案
相关题目