题目内容
【题目】(1)如图1,OP是∠MON的平分线,请利用该图形画一组以OP所在直线为对称轴且一条边在OP上的全等三角形,并用符号表示出来;
(2)请你参考这个作全等三角形的方法,解答下列问题:
①如图2:在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,试判断BC和AC、AD之间的数量关系;
②如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,求AB的长.
【答案】(1)全等的依据是SAS;(2)BC=AC+AD;(3)AB=21.
【解析】
试题分析:(1)本题是用尺规作图作出两个全等的三角形:在OM、ON上截取相同长度的线段,在OP上任取一点A,构造全等三角形即可;
(2)如图2,截取CE=CA,连接DE,根据角平分线的定义得到∠ACD=∠ECD,推出△CAD≌△CED,根据全等三角形的性质得到AD=DE,∠A=∠CED=60°,AC=CE,根据三角形的内角和得到∠B=30°,即可得到结论;
(3)截取AE=AD,连接CE,作CH⊥AB,垂足为点H,同理△ADC≌△AEC,根据全等三角形的性质得到AE=AD=9,CD=CE=10=CB,由CH⊥AB,CE=CB,得到EH=HB设EH=HB=x,根据勾股定理列方程即可得到结论.
解:(1)如图1,作图过程:以O为圆心任意长为半径作弧,交射线ON,OM为C,B两点,在射线OP上任取一点A(O点除外),连接AB,AC,
可得△AOB≌△AOC,
∵OB=OC,OA是公共边,OP是角平分线∠AOB=∠AOC,
∴全等的依据是SAS;
(2)如图2,截取CE=CA,连接DE,
∵CD平分∠ACB,
∴∠ACD=∠ECD,
在△ACD与△ECD中,
,
∴△CAD≌△CED,
∴AD=DE,∠A=∠CED=60°,AC=CE,
∵∠ACB=90°,∠A=60°,
∴∠B=30°,
∴∠B=∠EDB=30°,
∴DE=EB=AD,
∴BC=AC+AD;
(3)截取AE=AD,连接CE,作CH⊥AB,垂足为点H,
同理△ADC≌△AEC,
∴AE=AD=9,CD=CE=10=CB,
∵CH⊥AB,CE=CB,
∴EH=HB,
设EH=HB=x,
在Rt△ACH和Rt△CEH中
172﹣(9+x)2=102﹣x2,
解得:x=6,
∴AB=21.