题目内容
【题目】为了安全,交通部门一再提醒司机:请勿超速!同时,进一步完善各类监测系统,如图,在松铜公路某直线路段MN内限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了测速点C,从测速点C测得一小车从点A到达点B行驶了3秒钟,已知∠CAN=45°,∠CBN=60°,BC=120米.
(1)求测速点C到该段公路的距离;
(2)请你通过计算判断此车是否超速,(结果精确到0.1m/s)(参考数据:≈1.41,≈1.73)
【答案】(1)60(米);(2)此车没有超速.
【解析】
(1)作CH⊥MN.在Rt△BCH中,求出CH的长,即可得测速点C到该段公路的距离;(2)利用锐角三角函数分别求出BH、AH的长,即可求得AB的长,再利用速度=路程÷时间求得该车的速度,比较即可解答.
(1)过C作CH⊥MN,垂足为H,
∵∠CBN=60°,BC=120米,
∴CH=BCsin60°=120×=60(米);
(2)BH=BCcos60°=60(米),
∵∠CAN=45°,
∴AH=CH=60米.
∴AB=60﹣60≈43.8(m),
∴车速为43.8÷3=14.6m/s.
∵60千米/小时≈16.7m/s,
又∵14.6 m/s<16.7 m/s.
∴此车没有超速.
【题目】某度假村拥有客房40间,该度假村在经营中发现每间客房日租金x(元)与每日租出的客房数(y)有如下关系:
x | 200 | 220 | 260 | 280 |
y | 40 | 35 | 25 | 20 |
(1)观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识求出每日租出的客房数y(间)与每间客房的日租金x(元)之间的关系式.
(2)已知租出的每间客房每日需要清洁费80元,未租出的每间客房每日需要清洁费40元.含x(x≥200)的代数式填表:
租出的客房数 | ______ | 未租出的客房数 | ______ |
租出的每间客房的日收益 | ______ | 所有未租出的客房每日的清洁费 | ______ |
(3)若你是该度假村的老板,你会将每间客房的日租金定为多少元,才能使度假村获得最大日收益?最大日收益是多少元?