题目内容
【题目】如图,AB为⊙O的直径,C为圆上(除A、B外)一动点,∠ACB的角平分线交⊙O于D,若AC=8,BC=6,则BD的长为______.
【答案】.
【解析】
根据圆周角定理,由AB为⊙O直径得到∠ACB=90°,则可根据勾股定理计算出AB=10,接着根据圆周角定理得到∠ABD=∠ACD=45°, ∠BAD=∠BCD=45°,于是可判断△ADB为等腰直角三角形,然后根据等腰直角三角形的性质求AD.
解: ∵ AB为⊙O直径,
∴∠ACB=90°,
在Rt△ACB中, ∵AC=8,BC=6,
∴AB= ,
∵CD平分∠ACB,
∴∠ACD=∠BCD=45°,
∴∠ABD=∠ACD=45°, ∠BAD=∠BCD=45°,
∴△ADB为等腰直角三角形,
∴AD= .
故答案为:.
练习册系列答案
相关题目
【题目】为了解某区八年级学生的睡眠情况,随机抽取了该区八年级学生部分学生进行调查.已知D组的学生有15人,利用抽样所得的数据绘制所示的统计图表.
一、学生睡眠情况分组表(单位:小时)
组别 | 睡眠时间 |
二、学生睡眠情况统计图
根据图表提供的信息,回答下列问题:
(1)试求“八年级学生睡眠情况统计图”中的a的值及a对应的扇形的圆心角度数;
(2)如果睡眠时间x(时)满足:,称睡眠时间合格.已知该区八年级学生有3250人,试估计该区八年级学生睡眠时间合格的共有多少人?
(3)如果将各组别学生睡眠情况分组的最小值(如C组别中,取),B、C、D三组学生的平均睡眠时间作为八年级学生的睡眠时间的依据.试求该区八年级学生的平均睡眠时间.