题目内容

【题目】如图,点C,D是半圆O上的三等分点,直径AB=4,连接AD,AC,作DEAB,垂足为E,DEAC于点F.

(1)求证:AF=DF.

(2)求阴影部分的面积(结果保留π和根号)

【答案】(1)证明见解析;(2)

【解析】

(1)连接OD,OC,根据已知条件得到∠AOD=∠DOC=∠COB=60°,根据圆周角定理得到∠CAD=∠ADE=30°,于是得到结论;
(2)由(1)知,∠AOD=60°,推出△AOD是等边三角形,OA=2,得到DE= ,根据扇形和三角形的面积公式即可得到结论

(1)证明:连接OD,OC,

C、D是半圆O上的三等分点,

==,度数都是60°,

∴∠AOD=DOC=COB=60°,

∴∠DAC=30°,CAB=30°,

DEAB,

∴∠AEF=90°,

∴∠ADE=180°﹣90°﹣30°﹣30°=30°,

∴∠DACADE=30°,

AF=DF;

(2)解:由(1)知,∠AOD=60°,

OA=OD,AB=4,

∴△AOD是等边三角形,OA=2,

DEAO,

DE=

S阴影=S扇形AOD﹣SAOD=

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网