题目内容
【题目】已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.
(1)求证:BD是⊙O的切线;
(2)求证:CE2=EHEA;
(3)若⊙O的半径为 ,sinA= ,求BH的长.
【答案】
(1)证明:如图1中,
∵∠ODB=∠AEC,∠AEC=∠ABC,
∴∠ODB=∠ABC,
∵OF⊥BC,
∴∠BFD=90°,
∴∠ODB+∠DBF=90°,
∴∠ABC+∠DBF=90°,
即∠OBD=90°,
∴BD⊥OB,
∴BD是⊙O的切线;
(2)证明:连接AC,如图2所示:
∵OF⊥BC,
∴ = ,
∴∠CAE=∠ECB,
∵∠CEA=∠HEC,
∴△CEH∽△AEC,
∴ = ,
∴CE2=EHEA;
(3)解:连接BE,如图3所示:
∵AB是⊙O的直径,
∴∠AEB=90°,
∵⊙O的半径为 ,sin∠BAE= ,
∴AB=5,BE=ABsin∠BAE=5× =3,
∴EA= =4,
∵ = ,
∴BE=CE=3,
∵CE2=EHEA,
∴EH= ,
∴在Rt△BEH中,BH= = =
【解析】(1)如图1中,欲证明BD是切线,只要证明AB⊥BD即可;(2)连接AC,如图2所示,欲证明CE2=EHEA,只要证明△CEH∽△AEC即可;(3)连接BE,如图3所示,由CE2=EHEA,可得EH= ,在Rt△BEH中,根据BH= ,计算即可;
练习册系列答案
相关题目