题目内容

如图,方格纸中的每个小正方形边长都是1个长度单位,Rt△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(1,1),点B的坐标为(4,1).
(1)先将Rt△ABC向左平移5个单位长度,再向下平移1个单位长度得到Rt△A1B1C1,试在图中画出Rt△A1B1C1,并写出点A1的坐标;
(2)再将Rt△A1B1C1绕点A1顺时针旋转90°后得到Rt△A2B2C2,试在图中画出Rt△A2B2C2,并计算Rt△A1B1C1在上述旋转过程中点C1所经过的路径长.
解:(1)Rt△A1B1C1如图所示,A1(﹣4,0)。

(2)Rt△A2B2C2如图所示,

试题分析:(1)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1的坐标。
(2)根据网格结构找出点A1、B1、C1绕点A1顺时针旋转90°后的对应点A2、B2、C2的位置,然后顺次连接即可,再根据勾股定理列式求出A1C1的长,然后利用弧长公式列式计算即可得解。 
解:(1)Rt△A1B1C1如图所示,A1(﹣4,0)。

(2)Rt△A2B2C2如图所示,
根据勾股定理,
∴点C1所经过的路径长
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网