题目内容
【题目】如图,在四边形 ABCD 中,对角线 AC 平分∠DAB,∠ABD=52°,∠ABC=116°,∠ACB=α°,求∠BDC 的度数?
【答案】
【解析】
过C作CE⊥AB于E,CF⊥BD于F,CG⊥AD于G,依据BC平分∠DBE,AC平分∠BAD,即可得到CD平分∠BDG,再根据三角形外角性质,即可得出∠BDC的度数.
解:如图,过C作CE⊥AB于E,CF⊥BD于F,CG⊥AD于G,
∵∠ABD=52°,∠ABC=116°,
∴∠DBC=∠CBE=64°,
∴BC平分∠DBE,
∴CE=CF,
又∵AC平分∠BAD,
∴CE=CG,
∴CF=CG,
又∵CG⊥AD,CF⊥DB,
∴CD平分∠BDG,
∵∠CBE是△ABC的外角,∠DBE是△ABD的外角,
∴∠ADB=2∠ACB=2α°,
∴∠BDG=180°-2α°,
练习册系列答案
相关题目