题目内容
【题目】“军运会”期间,某纪念品店老板用5000元购进一批纪念品,由于深受顾客喜爱,很快售完,老板又用6000元购进同样数目的这种纪念品,但第二次每个进价比第一次每个进价多了2元.
(1)求该纪念品第一次每个进价是多少元?
(2)老板以每个15元的价格销售该纪念品,当第二次纪念品售出时,出现了滞销,于是决定降价促销,若要使第二次的销售利润不低于900元,剩余的纪念品每个售价至少要多少元?
【答案】(1)10元;(2)至少要12元.
【解析】
(1)设该纪念品第一次每个进价是x元,则第二次每个进价是(x+2)元,再根据等量关系:第二次进的个数=第一次进的个数即可列出方程,解方程即得结果;
(2)设剩余的纪念品每个售价y元,由利润=售价﹣进价,根据第二批的销售利润不低于900元即可列出关于y的不等式,解不等式即得结果.
解:(1)设该纪念品第一次每个进价是x元,由题意得:
,解得:x=10,
经检验x=10是分式方程的解,
答:该纪念品第一次每个进价是10元;
(2)设剩余的纪念品每个售价y元,由(1)知,第二批购进=500(个),
根据题意,得:15×500×+y×500×﹣6000≥900,解得:y≥12.
答:剩余的纪念品每个售价至少要12元.
练习册系列答案
相关题目