题目内容
【题目】如图,有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,求BD的长.
【答案】5
【解析】
由勾股定理求得AB=10cm,然后由翻折的性质求得BE=4cm,设DC=xcm,则BD=(8-x)cm,DE=xcm,在△BDE中,利用勾股定理列方程求解即可.
解:∵在Rt△ABC中,两直角边AC=6cm,BC=8cm,
由折叠的性质可知:DC=DE,AC=AE=6cm,∠DEA=∠C=90°,
∴BE=AB-AE=10-6=4(cm ),∠DEB=90°,
设DC=xcm,则BD=(8-x)cm,DE=xcm,
在Rt△BED中,由勾股定理得:BE2+DE2=BD2,
即42+x2=(8-x)2,
解得:x=3,
∴BD=8-x=5(cm).
故答案为:5.
练习册系列答案
相关题目