题目内容
【题目】已知:如图,在四边形中, ,点是的中点.
(1)求证: 是等腰三角形:
(2)当= ° 时, 是等边三角形.
【答案】(1)证明见解析;(2)150.
【解析】试题分析:(1)根据直角三角形斜边上的中线等于斜边的一半可得BE=AC,DE=AC,从而得到BE=DE.
(2)利用等边对等角以及三角形外角的性质得出∠DEB=∠DAB,即可得出∠DAB=30°,然后根据四边形内角和即可求得答案.
试题解析:证明:(1)∵∠ABC=∠ADC=90°,点E是AC边的中点,
∴BE=AC,DE=AC,
∴BE=DE,
∴△BED是等腰三角形;
(2)∵AE=ED,
∴∠DAE=∠EDA,
∵AE=BE,
∴∠EAB=∠EBA,
∵∠DAE+∠EDA=∠DEC,
∠EAB+∠EBA=∠BEC,
∴∠DAB=∠DEB,
∵△BED是等边三角形,
∴∠DEB=60°,
∴∠BAD=30°,
∴∠BCD=360°-90°-90°-30°=150°.
练习册系列答案
相关题目