题目内容

【题目】如图,正方形ABCD的边长为5,E是AB上一点,且BE:AE=1:4,若P是对角线AC上一动点,则PB+PE的最小值是 . (结果保留根号)

【答案】
【解析】解:连接BD, 则点D即为点B关于AC的对称点,连接DE交AC于点P,

由对称的性质可得,PB=PD,故PE+PB=DE,
由两点之间线段最短可知,DE即为PE+PB的最小值,
∵AB=AD=5,BE:AE=1:4
∴BE=1,AE=4,
在Rt△ADE中,
DE= = =
所以答案是:
【考点精析】通过灵活运用正方形的性质,掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网