ÌâÄ¿ÄÚÈÝ
ÒÑÖªÈçͼÅ×ÎïÏßy=x2-2x-3ÓëxÖá½»ÓÚA¡¢BÁ½µã£¨AÔÚBµÄ×ó²à£©ÓëyÖá½»ÓÚCµã£¬¶¥µãΪD£®£¨1£©Çó³öA¡¢B¡¢C¡¢DËĵã×ø±ê£»
£¨2£©Åжϡ÷AOCÓë¡÷BCDÊÇ·ñÏàËÆ£¬²¢ËµÃ÷ÀíÓÉ£»
£¨3£©¹ýC×÷Ö±ÏßCEƽÐÐxÖá½»Å×ÎïÏßÁíÒ»¸ö½»µãΪE£¬¶¯µãF´ÓCµã¿ªÊ¼£¬ÒÔÿÃë
¡¾´ð°¸¡¿·ÖÎö£º£¨1£©Å×ÎïÏߵĽâÎöʽÖУ¬Áîy=0£¬¿ÉÇóµÃµãA¡¢BµÄ×ø±ê£¬Áîx=0£¬¿ÉÇóµÃµãCµÄ×ø±ê£»½«Å×ÎïÏߵĽâÎöʽ»¯Îª¶¥µã×ø±êʽ£¬¼´¿ÉÇóµÃµãDµÄ×ø±ê£®
£¨2£©¸ù¾ÝÒÑÖªµÄA¡¢B¡¢C¡¢DµÄ×ø±ê£¬¿ÉÇóµÃÁ½¸öÈý½ÇÐθ÷×ÔµÄÈý±ß³¤£¬È»ºóÖ¤¡÷BCD¡¢¡÷AOCµÄ¶ÔÓ¦±ß³É±ÈÀý¼´¿É£®
£¨3£©´ËÌâ¿ÉÏÈÇó³öÂú×ãÒÔC¡¢F¡¢H¡¢GËĵãΪ¶¥µãµÄƽÐÐËıßÐεÄHµã×ø±ê£¬È»ºó´úÈëÅ×ÎïÏߵĽâÎöʽÖнøÐÐÑéÖ¤¼´¿É£®
·Ö±ð¹ýC¡¢F¡¢G×÷FG¡¢CG¡¢CFµÄƽÐÐÏߣ¬ÄÇôÕâЩƽÐÐÏߵĽ»µã¼´ÎªËùÇóµÄHµã£¬ÉèΪH1¡¢H2¡¢H3£¬¹ýG×÷GN¡ÍxÖáÓÚN£¬ÓÉÓÚ¡ÏOBC=45°£¬¼´¿É¸ù¾ÝBGµÄ³¤±íʾ³öGN¡¢BNµÄÖµ£¬¶øCPµÄ³¤Ò×ÇóµÃ£¬¸ù¾ÝƽÐÐËıßÐεÄÐÔÖÊ£¨Á½×é¶Ô±ßƽÐÐÇÒÏàµÈ£©£¬¼´¿ÉµÃµ½H1¡¢H2µÄ×ø±ê£¬È»ºó½«ËüÃÇ´úÈëÅ×ÎïÏߵĽâÎöʽÖнøÐÐÑéÖ¤¼´¿É£¬ÈôËùµÃ·½³ÌÓн⣬ÔòËùµÃµÄ½â¼´Îª·ûºÏÌõ¼þµÄHµã×ø±ê£¬ÈôÎ޽⣬ÔòÊÇ˵Ã÷²»´æÔÚ·ûºÏÌõ¼þµÄHµã£®H3µÄ×ø±êÇó·¨Í¬ÉÏ£®
½â´ð£º½â£º£¨1£©Áîy=0£¬¼´x2-2x-3=0£¬Ôòx=3£¬x=-1£¬
¡àA£¨-1£¬0£©£¬B£¨3£¬0£©£»
Áîx=0£¬¼´y=-3£¬
¡àC£¨0£¬-3£©£»
ÓÉÓÚy=x2-2x-3=£¨x-1£©2-4£¬
¹Ê¶¥µãD£¨1£¬-4£©£®
£¨2£©ÏàËÆ£¬ÀíÓÉÈçÏ£º
¡ßA£¨-1£¬0£©£¬B£¨3£¬0£©£¬C£¨0£¬-3£©£¬D£¨1£¬-4£©£¬
¡àOA=1£¬OC=3£¬AC=
£»
CD=
£¬BC=3
£¬BD=2
£»
¡à
=
£¬
¹Ê¡÷AOC¡×¡÷DCB£®
£¨3£©·Ö±ð¹ýC¡¢F¡¢G×÷FG¡¢CG¡¢CFµÄƽÐÐÏߣ¬ÈýÏß½»ÓÚH1¡¢H2¡¢H3£¨Èçͼ£©£»
ÔòËıßÐÎCFGH1¡¢ËıßÐÎCFH2G¡¢ËıßÐÎH3FGC¶¼ÊÇÆ½ÐÐËıßÐΣ»
¹ýG×÷GM¡ÍxÖáÓÚM£»
ÓÉÓÚOB=OC=3£¬Ôò¡ÏOBC=45°£»
Ò×ÖªBG=4t£¬ÔòBM=MG=2
t£¬OM=3-2
t£»
¹ÊG£¨3-2
t£¬-2
t£©£»
ÓÉÓÚËıßÐÎCFGH1¡¢ËıßÐÎCFH2G¶¼ÊÇÆ½ÐÐËıßÐΣ¬
¹ÊH1G=GH2=CF=
t£¬
¡àH1£¨3-3
t£¬-2
t£©£¬H2£¨3-
t£¬-2
t£©£»
°ÑH1´úÈëÅ×ÎïÏߵĽâÎöʽÖеãº
£¨3-3
t£©2-2£¨3-3
t£©-3=-2
t£¬
¼´9t2-5
t=0£»
½âµÃt=0£¨ÉáÈ¥£©£¬t=
£»
µ±t=
ʱ£¬H1£¨-
£¬-
£©£»
°ÑH2´úÈëÅ×ÎïÏߵĽâÎöʽÖеãº
£¨3-
t£©2-2£¨3-
t£©-3=-2
t£¬
¼´t2-
t=0£»
½âµÃt=0£¨ÉáÈ¥£©£¬t=
£»
µ±t=
ʱ£¬H2£¨1£¬-4£©£»
¹ýG×÷GP¡ÍyÖáÓÚP£¬¹ýH3×÷H3Q¡ÍyÖáÓÚQ£»
ÔòÓÐH3Q=GP-CF=3-2
t-
t=3-3
t£¬CQ=CP=3-2
t£»
¡àOQ=OC+CQ=6-2
t£»
¡àH3£¨3
t-3£¬2
t-6£©£»
½«H3´úÈëÅ×ÎïÏߵĽâÎöʽÖУ¬ÓУº
£¨3
t-3£©2-2£¨3
t-3£©-3=2
t-6£¬
¼´9t2-13
t+9=0£¬
½âµÃt=
£»
µ±t=
ʱ£¬H3£¨
£¬
£©£»
µ±t=
ʱ£¬H4£¨
£¬
£©£®
¹Ê´æÔÚ·ûºÏÌõ¼þµÄHµã£¬ÇÒ£º
µ±t=
ʱ£¬H1£¨-
£¬-
£©£»
µ±t=
ʱ£¬H2£¨1£¬-4£©£»
µ±t=
ʱ£¬H3£¨
£¬
£©£»
µ±t=
ʱ£¬H4£¨
£¬
£©£®
µãÆÀ£º´ËÌ⿼²éÁ˶þ´Îº¯ÊýͼÏóÓë×ø±êÖá½»µã×ø±êµÄÇ󷨡¢ÏàËÆÈý½ÇÐεÄÅж¨ºÍÐÔÖÊ¡¢Æ½ÐÐËıßÐεÄÅж¨µÈÖØÒªÖªÊ¶£¬×ÛºÏÐÔÇ¿£¬ÄѶȽϴó£®ÔÚÉæ¼°¶¯µãÎÊÌâʱ£¬Ò»°ãÒª¿¼ÂÇ·ÖÀàÌÖÂÛ˼ÏëµÄÔËÓã®
£¨2£©¸ù¾ÝÒÑÖªµÄA¡¢B¡¢C¡¢DµÄ×ø±ê£¬¿ÉÇóµÃÁ½¸öÈý½ÇÐθ÷×ÔµÄÈý±ß³¤£¬È»ºóÖ¤¡÷BCD¡¢¡÷AOCµÄ¶ÔÓ¦±ß³É±ÈÀý¼´¿É£®
£¨3£©´ËÌâ¿ÉÏÈÇó³öÂú×ãÒÔC¡¢F¡¢H¡¢GËĵãΪ¶¥µãµÄƽÐÐËıßÐεÄHµã×ø±ê£¬È»ºó´úÈëÅ×ÎïÏߵĽâÎöʽÖнøÐÐÑéÖ¤¼´¿É£®
·Ö±ð¹ýC¡¢F¡¢G×÷FG¡¢CG¡¢CFµÄƽÐÐÏߣ¬ÄÇôÕâЩƽÐÐÏߵĽ»µã¼´ÎªËùÇóµÄHµã£¬ÉèΪH1¡¢H2¡¢H3£¬¹ýG×÷GN¡ÍxÖáÓÚN£¬ÓÉÓÚ¡ÏOBC=45°£¬¼´¿É¸ù¾ÝBGµÄ³¤±íʾ³öGN¡¢BNµÄÖµ£¬¶øCPµÄ³¤Ò×ÇóµÃ£¬¸ù¾ÝƽÐÐËıßÐεÄÐÔÖÊ£¨Á½×é¶Ô±ßƽÐÐÇÒÏàµÈ£©£¬¼´¿ÉµÃµ½H1¡¢H2µÄ×ø±ê£¬È»ºó½«ËüÃÇ´úÈëÅ×ÎïÏߵĽâÎöʽÖнøÐÐÑéÖ¤¼´¿É£¬ÈôËùµÃ·½³ÌÓн⣬ÔòËùµÃµÄ½â¼´Îª·ûºÏÌõ¼þµÄHµã×ø±ê£¬ÈôÎ޽⣬ÔòÊÇ˵Ã÷²»´æÔÚ·ûºÏÌõ¼þµÄHµã£®H3µÄ×ø±êÇó·¨Í¬ÉÏ£®
½â´ð£º½â£º£¨1£©Áîy=0£¬¼´x2-2x-3=0£¬Ôòx=3£¬x=-1£¬
¡àA£¨-1£¬0£©£¬B£¨3£¬0£©£»
Áîx=0£¬¼´y=-3£¬
¡àC£¨0£¬-3£©£»
ÓÉÓÚy=x2-2x-3=£¨x-1£©2-4£¬
¹Ê¶¥µãD£¨1£¬-4£©£®
£¨2£©ÏàËÆ£¬ÀíÓÉÈçÏ£º
¡ßA£¨-1£¬0£©£¬B£¨3£¬0£©£¬C£¨0£¬-3£©£¬D£¨1£¬-4£©£¬
¡àOA=1£¬OC=3£¬AC=
CD=
¡à
¹Ê¡÷AOC¡×¡÷DCB£®
£¨3£©·Ö±ð¹ýC¡¢F¡¢G×÷FG¡¢CG¡¢CFµÄƽÐÐÏߣ¬ÈýÏß½»ÓÚH1¡¢H2¡¢H3£¨Èçͼ£©£»
ÔòËıßÐÎCFGH1¡¢ËıßÐÎCFH2G¡¢ËıßÐÎH3FGC¶¼ÊÇÆ½ÐÐËıßÐΣ»
¹ýG×÷GM¡ÍxÖáÓÚM£»
ÓÉÓÚOB=OC=3£¬Ôò¡ÏOBC=45°£»
Ò×ÖªBG=4t£¬ÔòBM=MG=2
¹ÊG£¨3-2
ÓÉÓÚËıßÐÎCFGH1¡¢ËıßÐÎCFH2G¶¼ÊÇÆ½ÐÐËıßÐΣ¬
¹ÊH1G=GH2=CF=
¡àH1£¨3-3
°ÑH1´úÈëÅ×ÎïÏߵĽâÎöʽÖеãº
£¨3-3
¼´9t2-5
½âµÃt=0£¨ÉáÈ¥£©£¬t=
µ±t=
°ÑH2´úÈëÅ×ÎïÏߵĽâÎöʽÖеãº
£¨3-
¼´t2-
½âµÃt=0£¨ÉáÈ¥£©£¬t=
µ±t=
¹ýG×÷GP¡ÍyÖáÓÚP£¬¹ýH3×÷H3Q¡ÍyÖáÓÚQ£»
ÔòÓÐH3Q=GP-CF=3-2
¡àOQ=OC+CQ=6-2
¡àH3£¨3
½«H3´úÈëÅ×ÎïÏߵĽâÎöʽÖУ¬ÓУº
£¨3
¼´9t2-13
½âµÃt=
µ±t=
µ±t=
¹Ê´æÔÚ·ûºÏÌõ¼þµÄHµã£¬ÇÒ£º
µ±t=
µ±t=
µ±t=
µ±t=
µãÆÀ£º´ËÌ⿼²éÁ˶þ´Îº¯ÊýͼÏóÓë×ø±êÖá½»µã×ø±êµÄÇ󷨡¢ÏàËÆÈý½ÇÐεÄÅж¨ºÍÐÔÖÊ¡¢Æ½ÐÐËıßÐεÄÅж¨µÈÖØÒªÖªÊ¶£¬×ÛºÏÐÔÇ¿£¬ÄѶȽϴó£®ÔÚÉæ¼°¶¯µãÎÊÌâʱ£¬Ò»°ãÒª¿¼ÂÇ·ÖÀàÌÖÂÛ˼ÏëµÄÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
| A¡¢a+b+c£¼0 | B¡¢b£¼a+c | C¡¢c£¼2b | D¡¢abc£¾0 |