题目内容
【题目】图1是边长分别为4 和2的两个等边三角形纸片ABC和OD′E′叠放在一起(C与O重合).
(1)操作:固定△ABC,将△ODE绕点C顺时针旋转30°,后得到△ODE,连接AD、BE、CE的延长线交AB于F(图2): 探究:在图2中,线段BE与AD之间有怎样的大小关系?试证明你的结论.
(2)在(1)的条件下将△ODE,在线段CF上沿着CF方向以每秒1个单位的速度平移,平移后的△CDE设为△PQR,当点P与点F重合时停止运动(图3). 探究:设△PQR移动的时间为x秒,△PQR与△ABC重叠部分的面积为y,求y与x之间的函数解析式,并写出函数自变量x的取值范围.
(3)将图1中△ODE固定,把△ABC沿着OE方向平移,使顶点C落在OE的中点G处,设为△ABG,然后奖△ABG绕点G顺时针旋转,边BG交边DE于点M,边AG交边DO于点N,设∠BGE=α(30°<α<90°)(图4). 探究:在图4中,线段ONEM的值是否随α的变化而变化?如果没有变化,请你求出ONEM的值,如果有变化,请你说明.
【答案】
(1)解:BE=AD.
证明:如图2,∵△ABC与△DCE是等边三角形,
∴∠ACB=∠DCE=60°,CA=CB,CE=CD,
∴∠BCE=∠ACD,
在△BCE与△ACD中,
,
∴△BCE≌△ACD(SAS),
∴BE=AD
(2)解:如图3,在△CQT中
∵∠TCQ=30°∠RQP=60°,
∴∠QTC=30°,
∴∠QTC=∠TCQ,
∴QT=QC=x,
∴RT=2﹣x,
∵∠RTS+∠R=90°
∴∠RST=90°
∴y= ×22﹣ (2﹣x)2=﹣ (2﹣x)2+ (0≤x≤2)
(3)解:ONEM的值不变,
理由为:如图4,∵∠AGB=60°,
∴∠MGE+∠NGO=120°,
∵∠GNO+∠NGO=120°,
∴∠MGE=∠GNO,
∵∠E=∠O,
∴△EMG∽△OGN,
∴ = ,
∴ONEM=OGEG=1.
【解析】(1)可通过证三角形BEC和ACD全等来得出BE=AD;(2)由于重合部分的面积无法直接求出,因此可用△RPQ的面积减去△RST的面积来求得(S、T为RP、RQ与AC的交点).△PRQ的面积易求得,关键是△RST的面积,三角形RST中,由于∠RTS=∠CTQ=60°﹣∠TCQ=30°,而∠R=60°,因此△RST是直角三角形,只需求出RS和ST的长即可.上面已经求得了∠QTC=∠QCT=30°,因此RT=RQ﹣QT=RQ﹣QC=3﹣x,然后根据△RTS中特殊角的度数,即可得出RS和ST的长,进而可得出y与x的函数关系式;(3)本题可通过证△GEM和△NGO相似来求解.
【考点精析】解答此题的关键在于理解相似三角形的判定与性质的相关知识,掌握相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.