题目内容

【题目】如图,抛物线y=﹣x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为

【答案】(1+ ,2)或(1﹣ ,2)
【解析】解: ∵△PCD是以CD为底的等腰三角形,
∴点P在线段CD的垂直平分线上,
如图,过P作PE⊥y轴于点E,则E为线段CD的中点,
∵抛物线y=﹣x2+2x+3与y轴交于点C,
∴C(0,3),且D(0,1),
∴E点坐标为(0,2),
∴P点纵坐标为2,
在y=﹣x2+2x+3中,令y=2,可得﹣x2+2x+3=2,解得x=1±
∴P点坐标为(1+ ,2)或(1﹣ ,2),
故答案为:(1+ ,2)或(1﹣ ,2).

当△PCD是以CD为底的等腰三角形时,则P点在线段CD的垂直平分线上,由C、D坐标可求得线段CD中点的坐标,从而可知P点的纵坐标,代入抛物线解析式可求得P点坐标.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网