题目内容
【题目】已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.
(1)求证:BD=CE;
(2)求证:∠M=∠N.
【答案】
(1)
证明:在△ABD和△ACE中, ,
∴△ABD≌△ACE(SAS),
∴BD=CE;
(2)
证明:∵∠1=∠2,
∴∠1+∠DAE=∠2+∠DAE,
即∠BAN=∠CAM,
由(1)得:△ABD≌△ACE,
∴∠B=∠C,
在△ACM和△ABN中,
∴△ACM≌△ABN(ASA),
∴∠M=∠N.
【解析】(1)由SAS证明△ABD≌△ACE,得出对应边相等即可(2)证出∠BAN=∠CAM,由全等三角形的性质得出∠B=∠C,由AAS证明△ACM≌△ABN,得出对应角相等即可.本题考查了全等三角形的判定与性质;证明三角形全等是解决问题的关键.
练习册系列答案
相关题目