题目内容

请阅读下列材料:问题:已知方程x2+x-3=0,求一个一元二次方程,使它的根分别是已知方程根的2倍
解:设所求方程的根为y,则y=2x,
所以x=
y
2

把x=
y
2
代入已知方程,得
(
y
2
)2+
y
2
-3=0

化简,得y2+2y-12=0故所求方程为y2+2y-12=0.
这种利用方程根的代换求新方程的方法,我们称为“换根法”.
(1)已知方程x2+x-1=0,求一个一元二次方程,使它的根分别是已知方程根的3倍,则所求方程为
y2+3y-9=0
y2+3y-9=0

(2)已知关于x的一元二次方程ax2+bx+c=0有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数;
(3)已知关于x的方程x2-mx+n=0有两个实数根,求一个方程,使它的根分别是已知方程根的平方.
分析:根据所给的材料,设所求方程的根为y,再表示出x,代入原方程,整理即可得出所求的方程.
解答:解:(1)设所求方程的根为y,则y=3x,
所以x=
y
3

把x=
y
3
代入已知方程,得
(
y
3
)
2
+
y
3
-1=0

化简,得y2+3y-9=0,
故所求方程为y2+3y-9=0.
故答案是:y2+3y-9=0;

(2)设所求方程的根为y,则y=
1
x
(x≠0),于是x=
1
y
(y≠0)
把x=
1
y
代入方程ax2+bx+c=0,得a(
1
y
2+b•
1
y
+c=0
去分母,得a+by+cy2=0.
若c=0,有ax2+bx=0,于是方程ax2+bx+c=0有一个根为0,不符合题意,
∴c≠0,
故所求方程为cy2+by+a=0(c≠0);

(3)设所求方程的根为y,则y=x2
所以x=±
y

①当x=
y
时,
把x=
y
代入已知方程,得
(
y
)
2
-m
y
+n=0,即y-m
y
+n=0;
②当x=-
y
时,
把x=-
y
代入已知方程,得
(
y
)
2
+m
y
+n=0,即y+m
y
+n=0.
点评:本题主要考查了一元二次方程的解、根的判别式.本题是一道材料题,是一种新型问题,解题时,要提取材料中的关键性信息.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网