题目内容
有这样一道题:计算(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)的值,其中x=-
,y=-2.甲同学把“x=-
”错抄成“x=
”.但他计算的结果是正确的,请你说出这是什么原因?
1 |
3 |
1 |
3 |
1 |
3 |
分析:先化简(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3),得出不含x的代数式,即可解释甲同学把x=-
错抄成“x=
”.但计算结果仍正确的原因.
1 |
3 |
1 |
3 |
解答:解:(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)
=2x3-3x2y-2xy2-x3+2xy2-y3-x3+3x2y-y3=(2-1-1)x3+(-3+3)x2y+(-2+2)xy2+(-1-1)y3
=-2y3,
故代数式的值与x的取值无关,
所以.甲同学把“x=-
”错抄成“x=
”.但他计算的结果是正确的.
=2x3-3x2y-2xy2-x3+2xy2-y3-x3+3x2y-y3=(2-1-1)x3+(-3+3)x2y+(-2+2)xy2+(-1-1)y3
=-2y3,
故代数式的值与x的取值无关,
所以.甲同学把“x=-
1 |
3 |
1 |
3 |
点评:考查了整式的加减-化简求值,解决此类题目的关键是化简代数式,熟记去括号法则,熟练运用合并同类项的法则.
去括号时,当括号前面是负号,括号内各项都要变号.
合并同类项时把系数相加减,字母与字母的指数不变.
去括号时,当括号前面是负号,括号内各项都要变号.
合并同类项时把系数相加减,字母与字母的指数不变.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目