题目内容
【题目】 已知△ABC中,∠A=25°,∠B=40°.
(1)求作:⊙O,使得⊙O经过A、C两点,且圆心O落在AB边上.(要求尺规作图,保留作图痕迹,不必写作法)
(2)求证:BC是(1)中所作⊙O的切线.
【答案】
(1)解:作图如图1:
(2)证明:如图2,
连接OC,
∵OA=OC,∠A=25°
∴∠BOC=50°,
又∵∠B=40°,
∴∠BOC+∠B=90°
∴∠OCB=90°
∴OC⊥BC
∴BC是⊙O的切线.
【解析】(1)作出线段AC的垂直平分线进而得出AC垂直平分线与线段AB的交点O,进而以AO为半径做圆即可;(2)连接CO,再利用已知得出∠OCB=90°,进而求出即可.
【考点精析】解答此题的关键在于理解切线的判定定理的相关知识,掌握切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线.
练习册系列答案
相关题目