题目内容

如图,在△ABC中,∠ACB=90°,AC=BC,E是BC上的一点,过点C作CF⊥AE于F,过B作BD⊥CB交CF的延长线于点D.
(1)求证:AE=CD;
(2)若BD=5cm,BC=12cm,求CF的长.
(1)∵BD⊥CB,∠ACB=90°,
∴∠D+∠BCD=∠AEC+∠BCD=90°,
∴∠D=∠AEC,
在△DBC和△ECA中,
∠D=∠AEC
∠DBC=∠ECA
BC=CA

∴△DBC≌△ECA(AAS),
∴AE=CD;

(2)∵BD=5cm,BC=12cm,
∴DC=
BD2+BC2
=13cm,
∴AE=13cm,
∵EC=BD=5cm,AC=BC=12cm,
∴在Rt△ECA中,S△ECA=
1
2
AE×FC=
1
2
AC×EC,
∴FC=
60
13
cm.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网