ÌâÄ¿ÄÚÈÝ
ÈçͼËùʾ£¬±ß³¤Îª2µÄÕý·½ÐÎOABCÈçͼ·ÅÖÃÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬Å×ÎïÏßy=ax2+bx+c¹ýµãA£¬B£¬ÇÒ12a+5c=0£®£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©Èç¹ûµãPÓɵãA¿ªÊ¼ÑØAB±ßÒÔÿÃë2¸öµ¥Î»µÄËÙ¶ÈÏòµãBÒƶ¯£¬Í¬Ê±µãQÓɵãB¿ªÊ¼ÑØBC±ßÒÔÿÃë1¸öµ¥Î»µÄËÙ¶ÈÏòµãCÒƶ¯£¬ÉèÒƶ¯Ê±¼äΪtÃ룮µ±Ï߶ÎPQµÄ³¤È¡µÃ×îСֵʱ£¬ÔÚÅ×ÎïÏßÉÏÊÇ·ñ´æÔÚµãR£¬Ê¹µÃÒÔP£¬B£¬Q£¬RΪ¶¥µãµÄËıßÐÎΪƽÐÐËıßÐΣ¿Èç´æÔÚ£¬Çó³öµãRµÄ×ø±ê£»Èç²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬P¡¢QµãÔÚÔ˶¯¹ý³ÌÖУ¬Å×ÎïÏßÉÏÊÇ·ñ»¹´æÔÚÆäËüµãR£¬Ê¹µÃÒÔP£¬B£¬Q£¬RΪ¶¥µãµÄËıßÐÎΪƽÐÐËıßÐΣ¿Èç´æÔÚ£¬Çó³öµãRµÄ×ø±ê£»Èç²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©¸ù¾ÝÕý·½Ðεı߳¤¿ÉµÃA¡¢BÁ½µãµÄ×ø±ê£¬½«ËüÃÇ´úÈëÅ×ÎïÏߵĽâÎöʽÖУ¬ÁªÁ¢12a+5c=0£¬¼´¿ÉÇóµÃ´ý¶¨ÏµÊýµÄÖµ£¬´Ó¶øÈ·¶¨¸ÃÅ×ÎïÏߵĽâÎöʽ£®
£¨2£©Ê×ÏÈÓÃt±íʾ³öPB¡¢BQµÄ³¤£¬ÀûÓù´¹É¶¨Àí¿ÉÇóµÃPQ2µÄ±í´ïʽ£¬¸ù¾ÝËùµÃº¯ÊýµÄÐÔÖʼ´¿ÉµÃµ½PQ2µÄ×îСֵ£¨¼´PQµÄ×îСֵ£©¼°¶ÔÓ¦µÄtÖµ£¬½ø¶ø¿ÉµÃµ½P¡¢QµÄ×ø±ê£¬È»ºó·ÖÁ½ÖÖÇé¿ö¿¼ÂÇ£º
¢ÙPRÓëBQƽÐÐÇÒÏàµÈ£¬ÄÇô½«Pµã×ø±êÏòÉÏ»òÏòÏÂƽÒÆBQ¸öµ¥Î»£¬¼´¿ÉµÃµ½RµÄ×ø±ê£¬È»ºó½«Æä´úÈëÅ×ÎïÏߵĽâÎöʽÖнøÐÐÑéÖ¤¼´¿É£»
¢ÚQRÓëBPƽÐÐÇÒÏàµÈ£¬ÄÇô½«Qµã×ø±êÏò×ó»òÏòÓÒƽÒÆBP¸öµ¥Î»¼´¿ÉµÃµ½Rµã×ø±ê£¬È»ºó½«Æä´úÈëÅ×ÎïÏߵĽâÎöʽÖнøÐÐÑéÖ¤¼´¿É£®
£¨3£©´ËÌâµÄ½â·¨Í¬£¨2£©£¬½«P¡¢QµÄ×ø±êÓÃt±íʾ£¬È»ºó°´£¨2£©ÌâµÄÁ½ÖÖÇé¿öµÃµ½¸÷×ÔµÄRµã×ø±ê£¬È»ºóÔÙ´úÈëÅ×ÎïÏßÖнøÐÐÑéÖ¤¼´¿É£®
£¨2£©Ê×ÏÈÓÃt±íʾ³öPB¡¢BQµÄ³¤£¬ÀûÓù´¹É¶¨Àí¿ÉÇóµÃPQ2µÄ±í´ïʽ£¬¸ù¾ÝËùµÃº¯ÊýµÄÐÔÖʼ´¿ÉµÃµ½PQ2µÄ×îСֵ£¨¼´PQµÄ×îСֵ£©¼°¶ÔÓ¦µÄtÖµ£¬½ø¶ø¿ÉµÃµ½P¡¢QµÄ×ø±ê£¬È»ºó·ÖÁ½ÖÖÇé¿ö¿¼ÂÇ£º
¢ÙPRÓëBQƽÐÐÇÒÏàµÈ£¬ÄÇô½«Pµã×ø±êÏòÉÏ»òÏòÏÂƽÒÆBQ¸öµ¥Î»£¬¼´¿ÉµÃµ½RµÄ×ø±ê£¬È»ºó½«Æä´úÈëÅ×ÎïÏߵĽâÎöʽÖнøÐÐÑéÖ¤¼´¿É£»
¢ÚQRÓëBPƽÐÐÇÒÏàµÈ£¬ÄÇô½«Qµã×ø±êÏò×ó»òÏòÓÒƽÒÆBP¸öµ¥Î»¼´¿ÉµÃµ½Rµã×ø±ê£¬È»ºó½«Æä´úÈëÅ×ÎïÏߵĽâÎöʽÖнøÐÐÑéÖ¤¼´¿É£®
£¨3£©´ËÌâµÄ½â·¨Í¬£¨2£©£¬½«P¡¢QµÄ×ø±êÓÃt±íʾ£¬È»ºó°´£¨2£©ÌâµÄÁ½ÖÖÇé¿öµÃµ½¸÷×ÔµÄRµã×ø±ê£¬È»ºóÔÙ´úÈëÅ×ÎïÏßÖнøÐÐÑéÖ¤¼´¿É£®
½â´ð£º½â£º£¨1£©ÓÉÌâA£¨0£¬-2£©£¬B£¨2£¬-2£©£»
¡à
¡à
¡ày=
x2-
x-2£®£¨4·Ö£©
£¨2£©ÓÉÌâAP=2t£¬BQ=t£»
¡àBP=2-2t£¬
Rt¡÷PBQÖУ¬
PQ2=PB2+BQ2=£¨2-2t£©2+t2
=5t2-8t+4
=5(t-
)2+
£»
µ±t=
ʱ£¬PQ2È¡µÃ×îСֵ£¬
ÔòPQ×îС£¬´ËʱP(
£¬-2)£¬Q(2£¬-
)£»
¼ÙÉè·ûºÏÌõ¼þµÄµãR´æÔÚ£¬
¢Ù¹ýP×÷PR¡ÎBQ£¬PR=BQ£»
´ËʱR£¨
£¬-
£©»ò(
£¬-
)£¬
½«Æä´úÈëÅ×ÎïÏß½âÎöʽ£¬
ÖªÕâÁ½¸öµãR¾ù²»ÔÚÅ×ÎïÏßÉÏ£»
¢Ú¹ýQ×÷QR¡ÎBP£¬QR=BP£¬
´ËʱR£¨
£¬-
£©»ò(
£¬-
)½«Æä´úÈëÅ×ÎïÏß½âÎöʽ£¬
Öªµã£¨
£¬-
£©ÔÚÅ×ÎïÏßÉÏ£¬µã(
£¬-
)²»ÔÚÅ×ÎïÏßÉÏ£¬
×ÛÉÏËùÊö£¬´æÔÚ·ûºÏÌõ¼þµÄµãR£¨
£¬-
£©£®£¨8·Ö£©
£¨3£©Ò×Öª£ºP£¨2t£¬-2£©£¬Q£¨2£¬t-2£©£¬
ÓÉÓÚµãRÔÚÅ×ÎïÏßÉÏ£¬
¡àÈô´æÔÚÒÔP£¬B£¬Q£¬RΪ¶¥µãµÄƽÐÐËıßÐΣ¬Ö»ÄÜÓÐÁ½ÖÖÇé¿ö£¬
¢ÙƽÐÐËıßÐÎPRBQ´ËʱPR¡ÎBQ£¬PR=BQ£»
¡àR£¨2t£¬-2-t£©£¬
½«Æä´úÈëÅ×ÎïÏß½âÎöʽµÃ£º
•(2t)2-
•2t-2=-2-t£¬
10t2-7t=-0£¬
t1=0(ÉáÈ¥)t2=
£»
´ËʱR(
£¬-
)£»
¢ÚPQRB£¬´ËʱQR¡ÎPB£¬QR=PB£»
¡àR£¨4-2t£¬t-2£©£¬
½«Æä´úÈëÅ×ÎïÏß½âÎöʽ£¬
(4-2t)2-
(4-2t)-2=t-2£»
10t2-33t+20=0£¬
¡àt1=2.5£¨ÉáÈ¥£©£¬t2=0.8£¬
´ËʱR£¨
£¬-
£©£»
×ÛÉÏËùÊö£¬³ý£¨2£©ÖеĵãRÍ⣬»¹´æÔÚµãR(
£¬-
)£®£¨12·Ö£©
¡à
|
¡à
|
¡ày=
5 |
6 |
5 |
3 |
£¨2£©ÓÉÌâAP=2t£¬BQ=t£»
¡àBP=2-2t£¬
Rt¡÷PBQÖУ¬
PQ2=PB2+BQ2=£¨2-2t£©2+t2
=5t2-8t+4
=5(t-
4 |
5 |
4 |
5 |
µ±t=
4 |
5 |
ÔòPQ×îС£¬´ËʱP(
8 |
5 |
6 |
5 |
¼ÙÉè·ûºÏÌõ¼þµÄµãR´æÔÚ£¬
¢Ù¹ýP×÷PR¡ÎBQ£¬PR=BQ£»
´ËʱR£¨
8 |
5 |
14 |
5 |
8 |
5 |
6 |
5 |
½«Æä´úÈëÅ×ÎïÏß½âÎöʽ£¬
ÖªÕâÁ½¸öµãR¾ù²»ÔÚÅ×ÎïÏßÉÏ£»
¢Ú¹ýQ×÷QR¡ÎBP£¬QR=BP£¬
´ËʱR£¨
12 |
5 |
6 |
5 |
8 |
5 |
6 |
5 |
Öªµã£¨
12 |
5 |
6 |
5 |
8 |
5 |
6 |
5 |
×ÛÉÏËùÊö£¬´æÔÚ·ûºÏÌõ¼þµÄµãR£¨
12 |
5 |
6 |
5 |
£¨3£©Ò×Öª£ºP£¨2t£¬-2£©£¬Q£¨2£¬t-2£©£¬
ÓÉÓÚµãRÔÚÅ×ÎïÏßÉÏ£¬
¡àÈô´æÔÚÒÔP£¬B£¬Q£¬RΪ¶¥µãµÄƽÐÐËıßÐΣ¬Ö»ÄÜÓÐÁ½ÖÖÇé¿ö£¬
¢ÙƽÐÐËıßÐÎPRBQ´ËʱPR¡ÎBQ£¬PR=BQ£»
¡àR£¨2t£¬-2-t£©£¬
½«Æä´úÈëÅ×ÎïÏß½âÎöʽµÃ£º
5 |
6 |
5 |
3 |
10t2-7t=-0£¬
t1=0(ÉáÈ¥)t2=
7 |
10 |
´ËʱR(
7 |
5 |
27 |
10 |
¢ÚPQRB£¬´ËʱQR¡ÎPB£¬QR=PB£»
¡àR£¨4-2t£¬t-2£©£¬
½«Æä´úÈëÅ×ÎïÏß½âÎöʽ£¬
5 |
6 |
5 |
3 |
10t2-33t+20=0£¬
¡àt1=2.5£¨ÉáÈ¥£©£¬t2=0.8£¬
´ËʱR£¨
12 |
5 |
6 |
5 |
×ÛÉÏËùÊö£¬³ý£¨2£©ÖеĵãRÍ⣬»¹´æÔÚµãR(
7 |
5 |
27 |
10 |
µãÆÀ£º´ËÌâÖ÷Òª¿¼²éÁ˶þ´Îº¯Êý½âÎöʽµÄÈ·¶¨¡¢Õý·½ÐεÄÐÔÖÊ¡¢Æ½ÐÐËıßÐεÄÅж¨ºÍÐÔÖÊ¡¢º¯ÊýͼÏóÉϵãµÄ×ø±êÒâÒåµÈ֪ʶ£¬ÔÚÉæ¼°µ½¶¯µãÎÊÌâʱ£¬Ò»¶¨Òª×¢Òâ·ÖÀàÌÖÂÛ˼ÏëµÄÓ¦Óã¬ÒÔÃ⩽⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿