题目内容
【题目】如图,某人为了测量小山顶上的塔ED的高,他在山下的点A处测得塔尖点D的仰角为45°,再沿AC方向前进60m到达山脚点B,测得塔尖点D的仰角为60°,塔底点E的仰角为30°,求塔ED的高度.(结果保留根号)
【答案】.
【解析】
试题分析:先求出∠DBE=30°,∠BDE=30°,得出BE=DE,然后设EC=x,则BE=2x,DE=2x,DC=3x,BC=x,然后根据∠DAC=45°,可得AC=CD,列出方程求出x的值,然后即可求出塔DE的高度.
试题解析:由题知,∠DBC=60°,∠EBC=30°,∴∠DBE=∠DBC﹣∠EBC=60°﹣30°=30°.
又∵∠BCD=90°,∴∠BDC=90°﹣∠DBC=90°﹣60°=30°,∴∠DBE=∠BDE,∴BE=DE.
设EC=x,则DE=BE=2EC=2x,DC=EC+DE=x+2x=3x,BC= ==x,由题知,∠DAC=45°,∠DCA=90°,AB=20,∴△ACD为等腰直角三角形,∴AC=DC,∴x+60=3x,解得:x=,∴DE=2x=.
答:塔高约为 m.
练习册系列答案
相关题目