题目内容

【题目】已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.
(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;

(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.

【答案】
(1)证明:∵点D是AB中点,AC=BC,

∠ACB=90°,

∴CD⊥AB,∠ACD=∠BCD=45°,

∴∠CAD=∠CBD=45°,

∴∠CAE=∠BCG,

又∵BF⊥CE,

∴∠CBG+∠BCF=90°,

又∵∠ACE+∠BCF=90°,

∴∠ACE=∠CBG,

在△AEC和△CGB中,

∴△AEC≌△CGB(ASA),

∴AE=CG


(2)解:BE=CM.

证明:∵CH⊥HM,CD⊥ED,

∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,

∴∠CMA=∠BEC,

又∵∠ACM=∠CBE=45°,

在△BCE和△CAM中,

∴△BCE≌△CAM(AAS),

∴BE=CM.


【解析】(1)首先根据点D是AB中点,∠ACB=90°,可得出∠ACD=∠BCD=45°,判断出△AEC≌△CGB,即可得出AE=CG,(2)根据垂直的定义得出∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,再根据AC=BC,∠ACM=∠CBE=45°,得出△BCE≌△CAM,进而证明出BE=CM.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网