题目内容
已知:如图,在?ABCD中,对角线AC、BD相交于点O,AE⊥BD,CF⊥BD,垂足分别为E、F.
求证:四边形AECF是平行四边形.
证明:在平行四边形ABCD中,
∵AE,CF分别为△ABD与△BCD的高,
∴AE=CF,
∵AE⊥BD,CF⊥BD,∴AE∥CF,
∴四边形AECF是平行四边形.
分析:根据已知条件,可证明AE与CF平行且相等.
点评:本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.
∵AE,CF分别为△ABD与△BCD的高,
∴AE=CF,
∵AE⊥BD,CF⊥BD,∴AE∥CF,
∴四边形AECF是平行四边形.
分析:根据已知条件,可证明AE与CF平行且相等.
点评:本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目