题目内容
【题目】阅读下面材料:对于平面图形A,如果存在一个圆,使图形A上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A被这个圆所覆盖.回答下列问题:
(1)边长为1cm的正方形被一个半径为r的圆所覆盖,r的最小值是______ cm;
(2)边长为1cm的等边三角形被一个半径为r的圆所覆盖,r的最小值是______ cm.
【答案】
【解析】试题解析:(1)正方形ABCD的边长为1cm,则正方形ABCD被一个半径为r的圆所覆盖,r的最小值为其外接圆的半径,如图1,正方形ABCD的外接圆为,
∴AC为直径,
∴r的最小值是cm;
(2)边长为1cm的等边三角形ABC被一个半径为r的圆所覆盖,r的最小值为其外接圆的半径,如图2,等边三角形ABC的外接圆为,
连结OB,作OD⊥BC于D,
∵点O为等边三角形ABC的外心,
∴OB平分∠ABC,
∵OD⊥BC,
在中,∵
∴r的最小值是cm.
故答案为: , .
练习册系列答案
相关题目