题目内容
【题目】在Rt△ABC中,∠ACB=90°,BD是△ABC的角平分线.
(1)如图1,若AD=BD,求∠A的度数;
(2)如图2,在(1)的条件下,作DE⊥AB于E,连接EC.求证:△EBC是等边三角形.
【答案】(1) 30°;(2)见解析.
【解析】
(1)根据题意易证∠A=∠DBA=∠DBC,然后利用三角形的内角和进行求解即可;
(2)根据等腰三角形的性质可得AE=BE,根据直角三角形中斜边上的中线等于斜边的一半可得CE=BE,然后根据等边三角形的判定即可得证.
(1)解:∵AD=BD,
∴∠A=∠DBA,
∵∠DBA=∠DBC,
∴∠A=∠DBA=∠DBC,
∵∠ACB=90°,
∴∠A+∠DBA+∠DBC=90°,
∴∠A=30°;
(2)证明:∵AD=BD,DE⊥AB,
∴AE=BE,
∴CE=BE,
∵∠A=30°,
∴∠EBC=60°,
∴△EBC是等边三角形.
练习册系列答案
相关题目