题目内容
【题目】如图,在中, ,高、 相交于点, ,且 .
(1)求线段 的长;
(2)动点 从点 出发,沿线段 以每秒 1 个单位长度的速度向终点 运动,动点 从 点 出发沿射线 以每秒 4 个单位长度的速度运动,两点同时出发,当点 到达 点时, 两点同时停止运动.设点 的运动时间为 秒,的面积为 ,请用含 的式子表示 ,并直接写出相应的 的取值范围;
(3)在(2)的条件下,点 是直线上的一点且 .是否存在 值,使以点 为顶 点的三角形与以点 为顶点的三角形全等?若存在,请直接写出符合条件的 值; 若不存在,请说明理由.
【答案】(1)5;(2)①当点在线段上时,,的取值范围是;②当点在射线上时,,,的取值范围是;(3)存在,或.
【解析】
(1)只要证明△AOE≌△BCE即可解决问题;
(2)分两种情形讨论求解即可①当点Q在线段BD上时,QD=2-4t,②当点Q在射线DC上时,DQ=4t-2时;
(3)分两种情形求解即可①如图2中,当OP=CQ时,BOP≌△FCQ.②如图3中,当OP=CQ时,△BOP≌△FCQ;
解:(1)∵是高,∴
∵是高,∴
∴,,
∴
在和中,
∴≌
∴;
(2)∵,
∴,,
根据题意,,,
①当点在线段上时,,
∴,的取值范围是.
②当点在射线上时,,
∴,的取值范围是
(3)存在.
①如图2中,当OP=CQ时,∵OB=CF,∠POB=∠FCQ,∴△BOP≌△FCQ.
∴CQ=OP,
∴5-4t═t,
解得t=1,
②如图3中,当OP=CQ时,∵OB=CF,∠POB=∠FCQ,∴△BOP≌△FCQ.
∴CQ=OP,
∴4t-5=t,
解得t= .
综上所述,t=1或s时,△BOP与△FCQ全等.
练习册系列答案
相关题目