题目内容
如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为______.
如图,在平面直角坐标系中,正方形ABCD的顶点O在坐标原点,点B的坐标为(1,4),点A在第二象限,反比例函数的图象经过点A,则k的值是( )
A. ﹣2 B. ﹣4 C. ﹣ D.
先阅读材料,再回答问题:分解因式:(a-b)2-2(a-b)+1.
【解析】将“a-b”看成整体,令a-b=M,则原式=M2-2M+1=(M-1)2,再将a-b=M还原,得到:原式=(a-b-1)2.上述解题中用到的是“整体思想”,它是数学中常用的一种思想,请你用整体思想解决下列问题:
(1)分解因式:9+6(x+y)+(x+y)2=____________________.
(2)分解因式:x2-2xy+y2-1=____________________.
(3)若n为正整数,则(n+1)(n+4)(n2+5n)+4的值为某一个整数的平方,试说明理由.
如图,在菱形ABCD中,F为对角线BD上一点,点E为AB延长线上一点,DF=BE,CE=CF.求证:
(1)△CFD≌△CEB;
(2)∠CFE=60°.
如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为_____.
若7名学生的体重(单位:kg)分别是40,42,43,45,47,47,58,则这组数据的平均数是( )
A. 44 B. 45 C. 46 D. 47
如图,在矩形ABCD中,,,将矩形沿对角线AC折叠,点D落在处,求重叠部分的面积.
如图,在一条笔直的东西向海岸线l上有一长为1.5km的码头MN和灯塔C,灯塔C距码头的东端N有20km.一轮船以36km/h的速度航行,上午10:00在A处测得灯塔C位于轮船的北偏西30°方向,上午10:40在B处测得灯塔C位于轮船的北偏东60°方向,且与灯塔C相距12km.
(1)若轮船照此速度与航向航向,何时到达海岸线?
(2)若轮船不改变航向,该轮船能否停靠在码头?请说明理由(参考数据:≈1.4,≈1.7).
已知凸四边形ABCD中,∠A=∠C=90°.
(1)如图1,若DE平分∠ADC,BF平分∠ABC的邻补角,判断DE与BF位置关系并证明.
(2)如图2,若BF、DE分别平分∠ABC、∠ADC的邻补角,判断DE与BF位置关系并证明.