题目内容
【题目】如图,在矩形ABCD中,AB=2,BC=4,P为边AD上一动点,连接BP,把△ABP沿BP折叠,使A落在A′处,当△A′DC为等腰三角形时,AP的长为( )
A. 2B. C. 2或D. 2或
【答案】C
【解析】
根据△A′DC为等腰三角形,分三种情况进行讨论:①A'D=A'C,②A'D=DC,③CA'=CD,分别求得AP的长,并判断是否符合题意.
①如图,当A′D=A′C时,过A′作EF⊥AD,交DC于E,交AB于F,则EF垂直平分CD,EF垂直平分AB
∴A'A=A'B
由折叠得,AB=A'B,∠ABP=∠A'BP
∴△ABA'是等边三角形
∴∠ABP=30°
∴AP=;
②如图,当A'D=DC时,A'D=2
由折叠得,A'B=AB=2
∴A'B+A'D=2+2=4
连接BD,则Rt△ABD中,BD=
∴A'B+A'D<BD(不合题意)
故这种情况不存在;
③如图,当CD=CA'时,CA'=2
由折叠得,A'B=AB=2
∴A'B+A'C=2+2=4
∴点A'落在BC上的中点处
此时,∠ABP=∠ABA'=45°
∴AP=AB=2.
综上所述,当△A′DC为等腰三角形时,AP的长为或2.
故选C.
【题目】浠水县商场某柜台销售每台进价分别为160元、120元的A、B两种型号的电风扇,下表是近两周的销售情况:
销售时段 | 销售数量 | 销售收入 | |
A种型号 | B种型号 | ||
第一周 | 3台 | 4台 | 1200元 |
第二周 | 5台 | 6台 | 1900元 |
(进价、售价均保持不变,利润=销售收入﹣进货成本)
(1)求A、B两种型号的电风扇的销售单价;
(2)若商场准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?
(3)在(2)的条件下,商场销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.