题目内容
【题目】如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.
(1)求证:BC是⊙O的切线;
(2)连接AF、BF,求∠ABF的度数;
(3)如果CD=15,BE=10,sinA=,求⊙O的半径.
【答案】(1)证明见解析(2)30°(3)
【解析】
试题分析:(1)连接OB,由圆的半径相等和已知条件证明∠OBC=90°,即可证明BC是⊙O的切线;
(2)连接OF,AF,BF,首先证明△OAF是等边三角形,再利用圆周角定理:同弧所对的圆周角是所对圆心角的一半即可求出∠ABF的度数;
(3)过点C作CG⊥BE于G,根据等腰三角形的性质得到EG=BE=5,由两角相等的三角形相似,△ADE∽△CGE,利用相似三角形对应角相等得到sin∠ECG=sinA=,在Rt△ECG中,利用勾股定理求出CG的长,根据三角形相似得到比例式,代入数据即可得到结果.
试题解析:(1)连接OB,
∵OB=OA,CE=CB,
∴∠A=∠OBA,∠CEB=∠ABC,
又∵CD⊥OA,
∴∠A+∠AED=∠A+∠CEB=90°,
∴∠OBA+∠ABC=90°,
∴OB⊥BC,
∴BC是⊙O的切线;
(2)如图1,连接OF,AF,BF,
∵DA=DO,CD⊥OA,
∴AF=OF,
∵OA=OF,
∴△OAF是等边三角形,
∴∠AOF=60°,
∴∠ABF=∠AOF=30°;
(3)如图2,过点C作CG⊥BE于G,
∵CE=CB,
∴EG=BE=5,
∵∠ADE=∠CGE=90°,∠AED=∠GEC,
∴∠GCE=∠A,
∴△ADE∽△CGE,
∴sin∠ECG=sinA=,即CE=13,
在Rt△ECG中,
∵CG==12,
∵CD=15,CE=13,
∴DE=2,
∵△ADE∽△CGE,
∴,
∴AD=,CG=,
∴⊙O的半径OA=2AD=.