题目内容
【题目】如图,等腰中,,点A、B分别在坐标轴上.
(1)如图①,若,,求C点的坐标;
(2)如图②,若点A的坐标为,点B在y轴的正半轴上运动时,分别以OB,AB为边在第一,第二象限作等腰,等腰,连接EF交y轴于P点,当点B在y轴上移动时,PB的长度是否变化?如果不变求出PB值,如果变化求PB的取值范围.
【答案】(1)C点坐标(1,-2);(2)不变化,PB=2,理由见解析
【解析】
(1)作CD⊥BO,易证△ABO≌△BCD,根据全等三角形对应边相等的性质即可解题;
(2)作EG⊥y轴,易证△BAO≌△EBG和△EGP≌△FBP,可得BG=AO和PB=PG,即可求得PB=AO,即可解题.
(1)
如图,作CD⊥BO,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°
∴∠CBD=∠BAO
在和中,
∴
∴BD=AO=3,CD=BO=1
∴C点坐标(1,-2)
(2)
如图,作EG⊥y轴,
∵∠BAO+∠OBA=90°,∠OBA+∠EBG=90°
∴∠BAO=∠EBG
在和中,
∴
∴BG=AO,EG=OB
∵OB=BF
∴BF=EG
在和中,
∴
∴PB=PG
∴PB=BG=AO=2
练习册系列答案
相关题目