题目内容
【题目】如图,在平面直角坐标系xOy中,Rt△OCD的一边OC在x轴上,∠OCD=90°,点D在第一象限,OC=6,DC=4,反比例函数的图象经过OD的中点A.
(1)求该反比例函数的解析式;
(2)若该反比例函数的图象与Rt△OCD的另一边DC交于点B,求过A、B两点的直线的解析式.
【答案】(1);(2).
【解析】
(1)先求出点A的坐标,再利用待定系数法求解可得;
(2)先求出点B的坐标,再利用待定系数法求解可得.
解:(1)∵∠OCD=90°,点D在第一象限,OC=6,DC=4,
∴D(6,4),
∵OD的中点为点A,
∴A(3,2);
设反比例函数解析式为,
那么k=3×2=6,
∴该反比例函数的解析式为;
(2)在中,当x=6时,y=1,
则点B(6,1),
设直线AB解析式为y=mx+n,(m0),代入A,B坐标得,
则,
解得,
∴直线AB解析式为y=﹣x+3.
练习册系列答案
相关题目
【题目】某中学为了了解学生最喜欢的一种球类运动,以便合理安排活动场地,在全校至少喜欢一种球类(乒乓球、羽毛球、排球、篮球、足球)运动的1800名学生中,随机抽取了若干名学生进行调查(每人只能在这五种球类运动中选择一种),调查结果统计如下:
球类名称 | 乒乓球 | 羽毛球 | 排球 | 篮球 | 足球 |
人数 | 42 | a | b | 33 | 21 |
解答下列问题:
(1)这次抽样调查的总人数是 ,统计表中a的值为 .
(2)求扇形统计图中排球一项的扇形圆心角度数.
(3)试估计全校1800名学生中最喜欢乒乓球运动的人数.