题目内容
【题目】如图,矩形ABCD中,AB=12,BC=8,过对角线BD中点O的直线分别交AB,CD边于点E,F.
(1)求证:四边形BEDF是平行四边形;
(2)当四边形BEDF是菱形时,求EF的长.
【答案】(1)见解析;(2).
【解析】
(1)根据平行四边形ABCD的性质,判定△BOE≌△DOF(ASA),得出四边形BEDF的对角线互相平分,进而得出结论;
(2)在Rt△ADE中,由勾股定理得出方程,解方程求出DE,由勾股定理求出BD,得出OD,再由勾股定理求出EO,即可得出EF的长.
解:(1)证明:∵四边形ABCD是矩形,O是BD的中点,
∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,
∴∠OBE=∠ODF,
在△BOE和△DOF中,
∴△BOE≌△DOF(ASA),
∴EO=FO,
∴四边形BEDF是平行四边形;
(2)∵四边形BEDF为菱形,
∴BE=DEDB⊥EF,
又∵AB=12,BC=8,
设BE=DE=x,则AE=12-x,
在Rt△ADE中,82+(12-x)2=x2,
∴x=.
又BD=,
∴DO=BD=2,
∴OE==.
∴EF=2OE=.
练习册系列答案
相关题目