题目内容
【题目】如图,正方形ABCD的边长AB=8,E为平面内一动点,且AE=4,F为CD上一点,CF=2,连接EF,ED,则EFED的最小值为( )
A.6B.4C.4D.6
【答案】A
【解析】
如图(见解析),在AD边上取点H,使得,连接EH、FH,先根据正方形的性质得出,,再根据相似三角形的判定与性质得出,从而可得,然后利用三角形的三边关系定理、两点之间线段最短可得取得最小值时,点E的位置,最后利用勾股定理求解即可得.
如图,在AD边上取点H,使得,连接EH、FH
四边形ABCD是正方形
,
,,即
又
,即
由三角形的三边关系定理得:
由题意得:点E的轨迹是在以点A为圆心,AE长为半径的圆上
由两点之间线段最短可知,当点E位于FH与圆A的交点时,取得最小值,最小值为
,
在中,由勾股定理得
即的最小值为
故选:A.
练习册系列答案
相关题目
【题目】二次函数(是常数,)的自变量与函数值的部分对应值如下表:
… | 0 | 1 | 2 | … | |||
… | … |
且当时,与其对应的函数值.有下列结论:①;②和3是关于的方程的两个根;③.其中,正确结论的个数是( )
A. 0B. 1C. 2D. 3