题目内容
【题目】如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC、AB相交于点D、E,连接AD,已知∠CAD=∠B.
(1)求证:AD是⊙O的切线;
(2)若∠B=30°,AC=,求劣弧BD与弦BD所围阴影图形的面积;
(3)若AC=4,BD=6,求AE的长.
【答案】(1)见解析;(2);(3)
【解析】
(1)连接OD,由OD=OB,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到∠1=∠3,求出∠4为90°,即可证AD是⊙O的切线;
(2)连接OD,作OF⊥BD于F,由直角三角形的性质得出CD=AC=1,BC=AC=3, AC=3,得出BD=BC-CD=2,由直角三角形的性质得出DF=BF=BD=1,OF=BF=,得出OB=2OF=,由扇形面积公式和三角形面积公式即可得出结果;(3)证明△ACD∽△BCA,得出,求出CD=2,由勾股定理得出AD=,求出AB=4,在Rt△AOD中,AD2 +OD2 =OA2,设⊙O的半径为x,则OA=4-x,解关于x的方程,BE=2x,求出BE后,根据AE=AB-BE,直接计算AE的长即可;
(1)证明:连接OD,如图1所示:
∵OB=OD,
∴∠3=∠B,
∵∠B=∠1,
∴∠1=∠3,
在Rt△ACD中,∠1+∠2=90°,
∴∠4=180°﹣(∠2+∠3)=90°,
∴OD⊥AD,
则AD为⊙O的切线;
(2)解:连接OD,作OF⊥BD于F,如图2所示:
∵OB=OD,∠B=30°,∴∠ODB=∠B=30°,
∴∠DOB=120°,
∵∠C=90°,∠CAD=∠B=30°,
∴CD=AC=1,BC=AC=3,
∴BD=BC﹣CD=2,
∵OF⊥BD,
∴DF=BF=BD=1,OF=BF=,
∴OB=2OF=,
∴劣弧BD与弦BD所围阴影部分的面积=扇形ODB的面积﹣△ODB的面积=
(3)解:∵∠CAD=∠B,∠C=∠C,
∴△ACD∽△BCA,
∴,
∴AC2=CD×BC=CD(CD+BD),
即42=CD(CD+6),
解得:CD=2,或CD=﹣8(舍去),
∴CD=2,
∴AD=,
∵,
∴,
∴AB=4,
∵OD⊥AD,
∴在Rt△AOD中,AD2 +OD2 =OA2,
∴设⊙O的半径为x,则OA=4-x,
∴(2) 2+x2=(4-x) 2,
∴,
∴AE=AB-BE=4-3=;