题目内容
已知二次函数的图象经过A(2,0)、C(0,12) 两点,且对称轴为直线x=4. 设
顶点为点P,与x轴的另一交点为点B.
(1)求二次函数的解析式及顶点P的坐标;
(2)如图1,在直线 y=2x上是否存在点D,使四边形OPBD为等腰梯形?若存在,求出点D的坐标;若不存在,请说明理由;
(3)如图2,点M是线段OP上的一个动点(O、P两点除外),以每秒个单位长度的速度由点P向点O 运动,过点M作直线MN∥x轴,交PB于点N. 将△PMN沿直线MN对折,得到△P1MN. 在动点M的运动过程中,设△P1MN与梯形OMNB的重叠部分的面积为S,运动时间为t秒. 求S关于t的函数关系式.
解:(1)设二次函数的解析式为y=ax2+bx+c
由题意得 解得
∴二次函数的解析式为y= x2-8x+12 ……………………………………………2分
点P的坐标为(4,-4) …………………………………………………………3分
(2)存在点D,使四边形OPBD为等腰梯形. 理由如下:
当y=0时,x2-8x+12=0 ∴x1=2 , x2=6
∴点B的坐标为(6,0)
设直线BP的解析式为y=kx+m
则 解得
∴直线BP的解析式为y=2x-12
∴直线OD∥BP………………………………………4分
∵顶点坐标P(4, -4) ∴ OP=4
设D(x,2x) 则BD2=(2x)2+(6-x)2
当BD=OP时,(2x)2+(6-x)2=32
解得:x1=,x2=2…………………………………………………………………6分
当x2=2时,OD=BP=,四边形OPBD为平行四边形,舍去
∴当x=时四边形OPBD为等腰梯形 …………………7分
∴当D(,)时,四边形OPBD为等腰梯形 ………8分
(3)① 当0<t≤2时,
∵运动速度为每秒个单位长度,运动时间为t秒,
则MP=t ∴PH=t,MH=t,HN=t ∴MN=t
∴S=t·t·=t2 ……………………10分
② 当2<t<4时,P1G=2t-4,P1H=t
∵MN∥OB ∴ ∽
∴ ∴
∴ =3t2-12t+12
∴S=t2-(3t2-12t+12)=-t2+12t-12
∴ 当0<t≤2时,S=t2
当2<t<4时,S=-t2+12t-12 ……………12分
解析:略