题目内容
【题目】如图,△ABC中,AB=AC,∠C=30°,DA⊥BA于A,BC=4.2cm,则AD=______.
【答案】1.4 cm
【解析】
根据等边对等角可得∠B=∠C=30°,再根据三角形的内角和定理求出∠CAD=30°,从而得到∠CAD=∠C,然后利用等角对等边可得AD=CD,再根据直角三角形30°角所对的直角边等于斜边的一半可得BD=2AD,然后求出BC=3AD,代入数据计算即可得解.
解:∵AB=AC,
∴∠B=∠C=30°,
∵DA⊥BA,
∴∠BAD=90°,
∴∠CAD=180°-30°×2-90°=30°,
∴∠CAD=∠C,
∴AD=CD,
在Rt△ABD中,∵∠B=30°,
∴BD=2AD,
∴BC=BD+CD=2AD+AD=3AD,
∵BC=4.2cm,
∴AD=4.2÷3=1.4cm.
故答案为:1.4cm.
练习册系列答案
相关题目
【题目】某班“数学兴趣小组”对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下,请补充完整.
(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:
x | … | ﹣3 | ﹣ | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … | |
y | … | 3 | m | ﹣1 | 0 | ﹣1 | 0 | 3 | … |
其中,m= .
(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.
(3)观察函数图象,写出两条函数的性质.
(4)进一步探究函数图象发现:
①函数图象与x轴有个交点,所以对应的方程x2﹣2|x|=0有个实数根;
②方程x2﹣2|x|=2有个实数根;
③关于x的方程x2﹣2|x|=a有4个实数根时,a的取值范围是 .