题目内容
【题目】如图,已知在Rt△ABC中,AB=AC=3,在△ABC内作第1个内接正方形DEFG;然后取GF的中点P,连接PD、PE,在△PDE内作第2个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第3个内接正方形…,依次进行下去,则第2019个内接正方形的边长为_____.
【答案】
【解析】
首先根据勾股定理得出BC的长,进而利用等腰直角三角形的性质得出DE的长,再利用锐角三角函数的关系得出,即可得出正方形边长之间的变化规律,得出答案即可.
∵在Rt△ABC中,AB=AC=3,
∴∠B=∠C=45°,BC=AB=6,
∵在△ABC内作第一个内接正方形DEFG;
∴EF=EC=DG=BD,
∴DE=BC=2,
∵取GF的中点P,连接PD、PE,在△PDE内作第二个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第三个内接正方形…依次进行下去,
∴,
∴EI=KI=HI,
∵DH=EI,
∴HI=DE=()2﹣1×3,
则第n个内接正方形的边长为:3×()n﹣1.
故第2019个内接正方形的边长为:3×()2018.
故答案是:3×()2018.
【题目】合肥百大集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润(元)如下表:
空调机 | 电冰箱 | |
甲连锁店 | 200 | 170 |
乙连锁店 | 160 | 150 |
设集团调配给甲连锁店x台空调机,集团卖出这100台电器的总利润为y(元).
(1)求y关于x的函数关系式,并求出x的取值范围;
(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如何设计调配方案,才能使总利润达到最大?
【题目】已知函数,其中与成反比例与成正比例,函数的自变量的取值范围是,且当或时,的值均为。
请对该函数及其图象进行如下探究:
(1)解析式探究:根据给定的条件,可以确定出该函数的解析式为: .
(2)函数图象探宄:①根据解析式,选取适当的自变量,并完成下表:
... | ||||||||||
... |
②根据表中数据,在如图所示的平面直角坐标系中描点,并画出函数图象.
(3)结合画出的函数图象,解决问题:
①当,,时,函数值分别为,则的大小关系为: (用“”或“”表示)
②若直线与该函数图象有两个交点,则的取值范围是 ,此时,的取值范围是 .