题目内容
如图,D为等腰Rt△ABC的斜边AB的中点,E为BC边上一点,连接ED并延长交CA的延长线于点F,过D作DH⊥EF交AC于G,交BC的延长线于H,则以下结论:①DE=DG;②BE=CG;③DF=DH;④BH=CF.其中正确的是( )
A.②③ | B.③④ | C.①④ | D.①②③④ |
根据已知条件,
∵△ABC是等腰直角三角形,CD是中线.
∴BD=DC,∠B=∠DCA=45°.
又∵∠BDC=∠EDH=90°,即∠BDE+∠EDC=∠EDC+∠CDH
∴∠BDE=∠CDH
∴△DBE≌△DCG(ASA)
∴DE=DG;BE=CG.
同理可证:△DCH≌△DAF,可得:DF=DH;AF=CH.
∵BC=AC,CH=AF,∴BH=CF.
故选D.
练习册系列答案
相关题目